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ABSTRACT
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There are a number of sources of scattering in binary optics: etch depth errors, line edge errors,

quantization errors, roughness, and the binary approximation to the ideal surface. These
sources of scattering can be systematic (deterministic) or random. In this paper scattering
formulas for both systematic and random errors are derived using Fourier optics. These
formulas can be used to explain the results of scattering measurements and computer
simulations.

1.0 INTRODUCTION

For a conventional optical element, such as a mirror, scattering comes from surface roughness or

inhomogeneities of surface constants. These surface variations are usually random and are best treated by
statistical analysis. In some cases the manufacturing method leads to periodic or quasi-periodic surface features.
Single-point diamond turning is an example of a manufacturing process that leaves the surface with accidental
periodic surface heights. In these cases the surface bears some resemblance to a diffraction grating and there
will be distinct diffraction orders. A randomly rough surface can be regarded as the superposltlon of an infinite

number of diffraction gratings, each with a different grating spacing and hence a different first order diffraction
angle. If the rms roughness of the surface is much smaller than the wavelength of light, then only the first

diffraction order is of any consequence.

In a binary optic the second and higher diffraction orders are important because the depth of the pattern
is about one wavelength. In some cases these higher orders of diffraction are desirable, but in many cases
anything except the first order can be considered "scattered" light. Scattering from binary optics will also come
from the inevitable random surface roughness, just as it does from conventional optics. Binary optics calls for

extremely precise positioning and control of etching to insure that each groove is the proper width and depth;
errors of fabrication is another source of scattering. Errors of fabrication might be either systematic

(deterministic) or random. We shall first consider systematic errors in section 2, and then random errors in
section 3.

2.0 SYSTEMATIC ERRORS

Systematic errors, or deterministic errors, include: etch depth errors, line edge errors, mask alignment
errors, quantization errors, and the shortcomings of an M-level binary optic approximation to the ideal
continuous phase profile. We shall compare computer simulations to analytical formulas. The computer
simulations were performed on a personal computer using the software tool Mathcad 2.5. Where possible these

results are compared to the work of others.

2.1 GRATINGS

Several types of systematic errors have been investigated in the past in connection with diffraction
gratings. When a groove position in the grating varies from the correct position, some energy will be scattered.
Periodic variations result in the concentration of scattering into spurious diffraction orders called ghosts. Ghosts

are common in ruled gratings because of periodic errors in turning screws and so forth. An approximate value
of the intensity of such ghosts relative to the main diffracted order was given by Rowland in 1893. As presented
by Hutley, 1
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/ghost/I(m) = (TTmc/a) 2 (1)

where m is the diffraction order, e is the maximum departure from the correct position, and a is the period of
the grating. The location of the ghost will depend on the period of the error. As an example, if e = 0.1gm, a
= 1.0_m, and m = 1, then the ghost intensity is approximately ten percent of the main diffraction order. We
note in equation (1) that the ghost intensity is proportional to the square of the diffraction order. There should
be no ghosts around the zero or central order. Random variations in the position of the grooves cause "grass,"
a broad spectrum of ghosts of random amplitudes in the plane of the diffraction orders. Scattering from surface
roughness, on the other hand, has no preferred orientation and is just as intense out of the plane of incidence
as in the plane of incidence.

The diffraction efficiency of a grating is the fraction of the incident energy that is diffracted into a

particular order. If only one order is desired, then the diffraction efficiency is a measure of the total unscattered
light. We consider a diffraction grating that consists of M steps per period. All step widths and heights are
assumed equal. We use Fourier optics theory and assume that tlie grating pattern extends to infinity. With these
assumptions it can be shown that the relative diffraction efficiency r/(p, M) of order p and with M levels is

r/(p, M) = {[sin(Trp/M) sin(Trp - dp/2)]/[rrp sin(lrp/M- q_/2M)]} 2 (2)

where dp/M is the change in phase in each step. 2 We note that the highest efficiency for order p occurs when
¢/2 = 7rp. Equation (2) is often used for binary optics in general. The assumption is that in a small region of

a binary optic the pattern is an approXimation to a grating.

i.2 ETCH DEPTH ERRORS •

The relative loss in diffraction efficiency with etch depth error can be obtained from equation (2). Let

r/oat(p,?,/) be the diffraction efficiency optimized for an order p and with Msteps. Let _ be the relative: etch
de_th error, then the phase is given by

-- 27rp(1+ E).

The diffraciion efficiency is therefore given by

r/(p, M) = r/opt(/,' M) {Isin(peTr)]/[M sin(pert/M)]} 2. (3)
,=

Figure (1) is a plot of the diffraction efficiency for Fresnel zone plate design FZP3A as a function of
pcrcent error in etch depth. Table 1 summarizes the design parameters for several Fresnel zone plates. The

TABLE 1. FRESNEL ZONE PLATE DESIGNS

Design _(/.Lm) Levels T f(mm) f# n b(mm)

FZP1 0.6328 16 316 10 10 1.457 0.35
FZP2A 0.6328 4 79 10 10 1.457 0.35
FZP2B 0.6328 4 2005 254 10 1.457 Do
FZP3A 0.6328 2 40 10 10 1.457 Do
FZP3B 0.6328 2 40 10 10 1.457 0.35

FZP3C 0.6328 2 395 100 10 1.457 3.50
FZP4 10.6 16 19 10 10 4.0 0.35
FZP5 10 16 3360 152.4 3 4.0 Do

FZP6 10 16 _ 12.7 1 .......4.0 Do
FZP7 10 8 1680 152.4 3 4.0 Do

FZP8 10 8 300 12.7 1 4.0 Do

data points were calculated using the approximate Raylcigh-Sommerfeid equation which for a circularly
symmetric Fresncl zone plate, on axis, can be written as
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U(0,0, z) : El] (27rz/)_i) _j faj aj+ 1 r/(r 2 + z 2) exp[ik(z 2 + r2)'h] dr (4)

where,

aj = [2/]x/M + (xj/M)21 (5)

qbj = exp{-27ri[1 + elmodq, M)/M} (6)

and z is the distance from zone plate to observation point, f is the focal length, T is the maximum number of

transition points {aj}, M is the number of levels, and e is the fractional etch depth error. We define the function
mod(j, M) as the remainder when] is divided by M. For this example the illuminating beam was assumed to be
uniform, so the Gaussian beam radius b (at the 1/e 2 points of intensity) is infinite.

For an etch depth error that is uniform across the surface we can use equation (3) for the far-field,

paraxial case. In a 2-ievel Fresnel zone plate an etch depth error of e will alter the phase over half the surface
of the optic (in the grooves only), so we use e/2 for the error term in equation (3). This curve, also shown in
figure (1), matches the data very well. Data similar to figure (1) was shown by Cox, et. al. 3

Uniform etch depth error is one type of systematic error that can occur in a binary optic. The etch

depth can also vary across the binary optic; for example each etch depth may be 5 percent deeper than it should
be near the center, gradually becoming 5 percent shallower near the edges. This might occur when the narrower

grooves near the edges reduce the etching rate. We can model this type of error by writing

qSj = exp{-27ri[1 + e(1- 2aj/aT)]mod(j, M)/M} (7)

for the phase term Cj in equation (4). In computer simulations using the Huygens-Fresnel integral (the
approximate Rayleigh-Sommerfeld equation), Goodman and Farn 4 found empirically that the diffraction

efficiency of a Fresnel zone plate falls off as the square of the etch error. The effect of etch errors is only a
weak function of the number of masks, and it is independent of the f-number and radius. They considered

Fresnel zone plates with f-numbers f/1 and f/3 and radii of one and three inches.

Figure (2) shows results identical to Farn and Goodman's data for a 16-level and an 8-level Fresnel
zone plate. The relative diffraction efficiency is the peak intensity (equations (4), (5) and (7)) divided by the

product of the peak intensity of a perfect lens and the maximum efficiency of an M-level zone plate (equation
(2)). Designs FZP5, FZP6, FZP7, and FZP8 from Table 1 are used in the calculations. The results do not
depend on the f-number, and depend only slightly on the number of levels (hence on the number of masks in
the fabrication process). Also shown in figure (2) are curves calculated from equation (3), where E = 7/8 e for
an 8-level zone plate, and e = 15/16 e for a 16-level zone plate. The relative etch depth error £ appears to be

the average systematic etch depth error along an axis of the Fresnel zone plate.

A systematic etch depth error decreasing from center to edge should shift the focal position. When
the efficiency is calculated at the optimum focal position, then the diffraction efficiency decrease is not nearly
as severe as calculated by Farn and Goodman in reference (4). The upper data points in figure (2) shows my
calculations for diffraction efficiency at best focus (empirically determined). A good fit to the data is obtained

by using equation (3) with e -- e/,/3, which is the mzs value of the systematic etch depth error e along an axis
of the Frcsnel zone plate. At best focus it is found that the diffraction efficiency is essentially independent of
the number of masks, the f-number, and the radius.

2.3 LINE EDGE ERRORS

One systematic line edge error would be a linear increase in the position of the transition points. We

write the focal length f from equation (5) in terms of the jth transition point ai, the wavelength _,, and the
number of etch levels M,

f = aj2M/2jX- j)_/2M. (8)
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A uniformexpansionof thetransitionpoints{aj} bythefactorB results in a new focal lengthf' given by

f ' = B2aj2M/2j)_ - j,_/2M

= B2f + (B2 - 1)_,.i/2M. (9)

In the paraxial case (i.e., when j is small) the second term of equation (9) can be ignored and the new focal
length is just B a times the old focal length. In general the focal length depends on j, which means there is
spherical aberration. The scatteringin this case is a spreading of the energy around each diffraction order; and
the larger the aperture, the larger the spreading.. .... _: ......

Over- or under-exposure of the photoresist during the pattern transfer process can result in systematic
line edge errors. Under-exposure results in the grooves being narrower than they should be. Farn and

Goodman found that diffraction efficiency (defined as the Strehl ratio) of a Fresnel zone plate falls off linearly
with the llne edge error, the effect of line edge error is a strong function of the f-number, a weak function of the
number of masks and is independent of radius. 4

Cox et. al. measured the diffraction efficiency of an f/lO Fresnel zone plate in ten "zones" of equal
area. 3 The first zone is the central portlon of the zone plate, covering ten percent of the entire zone plate. Two

zone plates were deliberately under-exposed so that the etched portions were 1.35/.zm narrower than they should
be. A plot of the measured local diffraction efficiency (fraction of power) is shown in figure (3) for the average
of the two zone plates. Also shown is a plot of the calculated local diffraction efficiency in each of the ten
"zones" as defined by Cox, et. al.

We expect the diffraction efficiency to decrease with increasing zone number since the error e becomes
relatively more Significant as ihe spacing decreases. In a 2-ievei zone plate a ilne edge error represents an area
of the zone plate that does not contribute at all to the peak intensity. We therefore subtract the error fraction
of a period from the efficiency. In a 2-1evei Zone plate a period is every two transition points. In design FZP3A
thcre are forty transition points, hence four transition points in each of ten "zones" as defined by Cox, et. al. If

d i is the average period in the ith "zone", or

d i = (a4i+2 - a4i + a4i+4- a4i+2)/2, (10)

then the local diffraction efficiency r7i is approximately given by

r/i(e) = (1 -e/di) [M/rr sin(rr/M)] 2, (11)

where e is the line edge error. When e = 0 equation (11) reduces to the standard formula for diffraction
efficiency with no errors (equation (2)). To compare with the Cox data we use the value of e = 1.35 /.tm
measured by Cox, and we find a good fit using equation (11), as shown in figure (3). The diffraction efficiency
is seen in equation (11) to decrease linearly with line edge error and is a strong function of the f-number (the
smaller the f-number, the smaller the value of d in the outer zones) as observed by Farn and Goodman. 4

2.4 MASK ALIGN_IENT ERRORS

The experimental and theoretical work of Cox 3'5 shows that a fixed lateral error, or a mask alignment
error, leads to a fall off in diffraction efficiency that is more severe in the outer zones of the zone plate than near
the center. In the outer zones a fixed error represents a greater percentage of the pattern and we expect it to
cause the greater efficiency decrease. By measuring the local diffraction efficiency of a number of zone plates
with dcsign FZP2B, Cox found that the fall off in efficiency is approximately linear from zone to zone. I have
plotted in figure (4) the diffraction efficiency in the outer most (i.e. 10th) zone as a function of the mask
alignment error. The data points with a small alignment error represent typical fabrication errors, the large
alignment error values were intentional. The straight line in figure (4) is given by

r/lo(e) = (1- e/lalO,ave ) [M/Tr sinQr/M)] 2 (12)
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whereM = 4 for this 4-level design, and Aal0 -vo = 3.25 #m is the mean separation of transition points in the
tenth zone. The mean separation is much smal_'_r than the average period used in equation (11). Cox concludes

that mask alignment error is more significant than etch depth error or line edge error.

2.5 M-LEVEL APPROXIMATION ERRORS

A 100 percent efficient Fresnel zone plate would have a continuously curving profile. Equation (2)
indicates that a 16-level binary optic approaches that level of efficiency. How is the energy distributed that is
not diffracted into the first order.'? We know that in the absence of fabrication errors the energy goes into other

diffraction orders which will have very low intensity at the first-order focal plane. To calculate the scattering we
first reduce the diffraction "ringing," caused by the finite size of the Fresnel zone plate. The amount of energy
outside of the central lobe can be minimized by assuming that the Fresnel zone plate is illuminated by a
Gaussian beam that has low intensity at the edges of the aperture.

Figure (5) compares the intensity as a function of angle for a cylindrical Fresnel zone plates with 2-,
4-, and 16-levels. We are using designs FZP3B, FZP2A, and FZP1. The intensity is relative to the peak intensity

Of a perfect lens with the same f-number. The data has been smoothed by averaging over sixteen successive
ta points. The first point plotted is the mean of the first sixteen computer generated data points,/1 to/'16'

divided by I_. The second point plotted is the mean of I2 to 1"17divided by/"_, and so forth. There are _ data
points for e_ch curve, and the points are spaced at intervals of _. v

We notice in figure (5) that the intensity of the scattered light from the 2-level zone plate seems to

drop to the intensity of the 4-level zone plate at about 5.7 degrees. This can be explained as follows. In the lst-
order focal plane the biggest visible difference between the 2-level scattering and the 4-level scattering will be
the contribution of the 3rd-order energy. The diffraction efficiency equation (2) indicates that for a 2-level

binary optic about 4.5 percent goes into the 3rd-order. The 4-level (and higher) binary optic has no energy in
the 3rd-order.

The paraxial focus of the 3rd-order is at f/3, wheref is the lst-order focal length. Using geometrical

optics the extreme ray from the edge of the zone plate which passes through the 3rd-order focus str.ikes the lst-

order focal plane at x o' given by

xo'l( f - f/3) : (f/2pc)/(f/3) (13)

where pc is the lst-order f-number of the zone plate. Hence

Xo, = f/pc. (14)

This is the geometric edge of the 3rd-order diffraction in the lst-order focal plane. As seen from the center of

the zone plate this edge makes an angle 0', given by

(15)

For an f/lO zone plate 0' = 5.7 degrees, in good agreement with our observation in figure (5).

3.0 RANDOM ERRORS

Random errors are processing errors that are statistical in nature. In this section we discuss some
random errors that have been noted for gratings. We then derive a formula for random roughness for binary

optics. We show that this formula can also be used to calculate the scattering from random etch depth errors
and random line edge errors. We compare the formula to computer simulations of random fabrication errors.

We use Dammann gratings and Frcsnel zone plates as examples.
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3.i_GRATINGS

From the theory of gratings a random change in form from groove to groove is called "accidental error
of amplitude," and is a form of random error independent of grating order. 6 A random error in the position

of the groove causes "grass," as mentioned previously. The proportion of the energy scattered into grass is given
by I

lgrass/l(m) = (4_Tmerms/a) 2 (16)

where e is the nns error in groove position. According to this formula grass increases as the square of the.rms
diffraction order, the same as the intensity for ghosts.

3.2 RANDOM ROUGHNESS

We consider now the problem of a binary optic with slightly rough surfaces. 7 We shall consider the

binary optic to behave like a grating and use the Fraunhofcr diffraction formula_ The illumination of the grating
will be by a collimated laser beam of wavelength ), and beam radius b. The beam waist is at the grating. The

field at the point (x0, Y0' z) is given by (ignoring some unimportant phase terms)

U(xo'YO' z) = 1/),z f._®f.,,_ EArn exp(2_rintrJa) exp[kih(xl,Yl)(n- 1)]

exp[-ik(xo_ 1 + yOYl)/Z] exp[-(Xl 2 + y12)/b 21 dr 1 dy I (17)

where ._,A m exp(2rrhnxl/a ) is the Fourier series of the field induced by the binary optic in the (xi, yl,0) plane,
a is the grating period, n is the index of refraction of the grating material, and h is the roughness or surface

height variation function. We multiply U(x0, Y0, z) by its complex conjugate to obtain the intensity.

We next
therefore 8

assume that the distribution of surface heights h is random with a Gausslan probability;

<exp{ki[h(Xl,Yl)- h(x2,y2)](n - 1)}> = exp{-Ik(n - 1)o] 2 [1- R(x 1 -x2, y 1 -Y2)]} (18)

where < > denotes the average or expected Value, o is the nns surface roughness and R 0 is the autocorrelation
function. If we assume that the surface roughness is small, ko < < 1, then

exp{-[k(n - 1)o] 2 [1 - R(x 1 -x2, Yl -Y2)]} = 1- [k(n - 1)o] z [1- R(x1 -x2, Yl - Y2)]" (19)

Next, assume that the autocorrclation function is exponential,

R(Xl "x2, Yl - Y2) = exp{-[(Xl "x2) 2 + (Yl - Y2)211/2/r } (20)

whcrc r is the correlation length. Recognizing that we now have the zero order Hankel Transform of the
autocorreiation fund|on we find that

< l(x0' Y0' z) > = < lrough(X0, Y0' z) > + < Ismooth(X0, Y0' z) > (21)

whcrc

< Irough(X0' Y0' z) > = ['n'O"r bk(,, - 1)/M] 2 y:.lain 12 { 1 + [(27rm/a - xok/z) 2 + (Y0k/z)2] r 2}-a/2, (22)

<lsmooth(X0, y o, z)> = (b27r/Xz) 2 {1 -[k(n- 1)o] 2} Y:lArn[ 2 exp{-2b2rr2[(Xo/XZ- ,,i/a)2+ (y0/Xz)2]}. (23)

We can compare thcse results to the scattering formulas of othcrs by rewriting this expression as the

bidirectional transmission distribution function (BTDF). The sine of the spccular angle 02, m in the ruth order
is given by
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sin02,m = ),m//a

and the sine of the scatter angle is, to the approximations we are using,

(24)

sinO s = Xo/Z. (25)

We define the spatial frequency Pm by

Pm- k(sin0s - sin92,m)" (26)

Along the axis, Yo = 0, and we can write the BTDF using equation (22), and equations (24) to (26) by

BTDF = (2k4//r) [a'r(n - 1)/2] 2 cos0 s ZlAml 2/[1 + pmar2l a/2. (27)

The typical two-dimensional bidirectional reflection distribution function (BRDF) with an exponential
autocorrelation function, for normal incidence is given by 9

BRDF = (2k4/_ r) (a'r) 2 cos0$ F(Os) /[1 + pm2r2] 3/2 (28)

where F(9_) is approximately one for small angles, and is exactly one in some theories. Comparing equation (28)
with equation (27) we see that one difference is the factor [(n - 1)/2] 2. This difference exists because the phase
change on reflection from surface features is proportional to twice the height of the feature, but in transmission
the phase change is (n - 1). The second difference is the term E lAin 12. Evidently the existence of the grating

replicates the scattering pattern around each diffraction order. The amplitude of the scattering is scaled by the
amplitude of the diffraction order.

In a similar manner we can derive a formula for one-dimensional random roughness. We shall show

that this formula can also predict the scattering from Dammann gratings with random etch depth and random
line edge errors. In addition the formula will predict scattering for cylindrical Fresnel zone plates with random
etch depth or line edge errors; the results agree well with the average of computer simulations. Equation (22)
will predict scattering from circular Fresnel zone plates with random etch depth or line edge errors.

The one-dimensional random roughness formula is derived by assuming that the equations are

independent of the Yl-axis' Instead of a zero order Hankel Transform of the two-dimensional autocorrelation
function, we have the Fourier Transform of the one-dimensional autocorrelation function. The end result is

< l(x0' Y0' z) > = < Irough(X 0, Y0' z) > + < lsmooth(X 0, Y0' z) > (29)

where

<lrough(Xo, Yo, Z)> = [k(n - 1)olXz12brJ(27r)ElArn1211 + r2(/Cro/Z - 2rrm/a)21 1 (30)

<lsmooth(Xo, Yo, Z)> = (b/Xz)2//'{1 - [k(n - 1)o]2}r;:lAm12exp{-2b27r2[xO/XZ - tufa]2}. (31)

We recall that o is the nns roughness, r is the correlation length, k = 27r/_,, b is the radius of the Gaussian
beam, n is the refractive index of the substrate, a is the period of the grating, and ]A m 12 (as it turns out) is the

diffraction efficiency of the mth order.

3.3 ETCH DEPTH ERRORS

We now consider etch depth errors where the etch depth varies randomly from groove to groove. We
can consider Dammann gratings and cylindrical Fresnel zone plates as one-dimensional rough surfaces. Circular

Fresnel zone plates are two-dimensional.
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3.3.1 DAMMANN GRATING

Dammann gratings are convenient to consider because they are simple two:level binary optics where the
diffraction orders are spatially separated. We consider a number of designs, as shown in Table 2.

TABLE 2. DAMMANN GRATING DESIGNS

Design Transition points depth period ,_ Equal intensity

al(/am ) a2(/_m ) h(/am) a(/am) (/am) (orders)

DG1 43.02 86.96 0.545 200 0.633 0, +1, +2, +3
DG2 43.02 86.96 9.129 200 10.6 0, +1, +2, +3
DG3 10.75 21.74 0.545 50 0.633 0, +1, +2, +3
DG4 13.74 30.06 1.23 60.12 10.6

Figure=i6) shows the relative intensityo(Dammann grating design DG1 with a random etch depth
error. In addition to the values in Table 2, b = 4.5 mm, f = 1.82 m, and n = 1.45702, except for DG4 where
b = 2.5 mm and n = 3.4178. The standard deviation of the error is 6 - 0.01/am. The intensity profile was
calculated with four sets of random numbers and the results were averaged together. The results were also

smoothed by averaging over sixteen data points, and normalized by dividing by the peak intensity in the error-
free case. In figure (6)ihe Zero diffractibn-b-rtlei:-is at zero degrees, an--_d_e-n_xtffh-Tffo_[ive diffracti0n Orders
are also shown. The negative diffraction orders would be similar and are not plotted.

Also shoWff:in figure (6) is a piot of equatlon (29). =TWaecorrdaflori" ie-ngth:_r we estimate to be

approximately equal to the width of the etched portion of the Dammann grating. In this portion the correlation
is unity, falling off to zero outside of the etched area. For design DG1 there are two etched portions per period;
the width of each is 86.96 - 43.02 = 43.94, so we set r = 44. The rms roughness cr is

cr = (62r/a + 0 + 62r/a + 0) '/' ==

= 6 (2'r/a) _. (32)

In figure (7) the standard deviation of the etch error has been increased to 6 = 0.1/am. The average
of four computer simulations using the Fresnel diffraction formula is shown together with the 1-D roughness
equation (29): The Value of r is again 44-fi6a_-and we use equati0n-(3i)-t-o Calculate the nns roughness. It
appears to be a good fit. We see from equation (29), and it is confirmed in the computer simulations illustrated
in figures (6) and (7), that the scattering is proportional to 6 2, since 6 and cr are linearly related through

equation (31). The diffraction efficiency can be given by equation (31), which indlcates that for random etch
depth errors with two etched surfaces per period, the diffraction efficiency decreases by

r/ = r/o{1- [k(n- 1)a] 2}

= _0{1-: (2r/a)[k(n- 1)612} (33)

using equation (32). The efficiency with no errors is rT0, and is given by equation (2).

What effect does wavelength have on the scattering? Consider design DG2, which has the same
transitlon points (hence the same pattern), but differs in the design wavelength and etch depth. The relative
intensity profile is shown in figure (8), along with a plot of the one-dimensional scattering formula (29). Formula
(29) agrees as well with computer simulations for the 10.6/am wavelength as for the 0.6328/am wavelength. The
etch depth error has a standard deviation of 0.1 /am, the same as the error illustrated in figure (7), but the
relative scattering is much less. This is in keeping with the prediction of equations (30) and (31) that the relative
scattering is

<Irough(Xo, Yo, Z)> /lpeak = [kOz -1)o/xz]2br./(2_r) Y:IAml2[1 + r2(kXo/Z - 21rm/a)21"1/(b/,kz)2rrlApeakl 2

,!
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= [k(.- ])o]2rJ2 ZlAm/Apeakl2[bJ7r + bJTrr2(t%/z - 21r',,/a)21"1 (34)

assuming there is not much overlap of energy between diffraction orders. We see from equation (34) that the
relative scattering is proportional to (ko) 2 and therefore proportional to (5/),) 2, aswe can also see by comparing

figures (8) and (7).

3.3.2 CYLINDRICAL FRESNEL ZONE PLATES

Continuing with our examination of random etch depth errors, we now look at cylindrical Fresnel zone
plates. This type of zone plate will show one-dimensional scattering characteristics. The cylindrical Fresnel

zone plate creates a line focus (at x 0 = 0) for each diffraction order at a distance from the zone plate that
depends on the diffraction order. We shall concern ourselves only with the scattering from roughness in the first
diffraction order; in the lst-order focal plane scattering from other diffraction orders is insignificant. The relative

scatter intensity from roughness is therefore (using equation (34)),

<lrough(X0,Y0, z)>/lpeak = [k(n - I)012r J2 [bJlr + bJ_r( rkXo/Z)2] a (35)

for the cylindrical Fresnel zone plate.

As before, the correlation length r is the mean width of the etched portions;

r = mean{aj+l " aj} (36)

which for design FZP1 gives r = 1.58/_m. For the Fresnel zone plates all levels were assumed to have some
etch depth error, so the mean is taken over all intervals. This also implies that cr = 6. Figure (9) should be
compared to figure (10) where the standard deviation of the etch depth error is 6 = 0.1/_m and 6 = 0.01/zm,
respectively. The scattering drops two orders of magnitude with one order of magnitude decrease in the error.
Again equation (35) provides a good prediction of the avera_ze value of the scattering at a particular angle.
Equation (35) predicts that the scattering is proportional to cr;, and 0 2 = 6 2 in this case.

A 4-level Fresnel zone plate (FZP2A) shows behavior similar to the 16-level zone plates just considered.
Figure (11) illustrates this case when the standard deviation of the etch depth error is 6 = 0.1/_m. A plot of
equation (35) is shown for comparison. Equation (36) gives r = 6.33/_m; and cr = 6. The random scattering
in this case is less than the systematic error for angles greater than about three degrees; averaging is necessary
to reveal the scattering. The gaps in the curve indicate where the average intensity with etch depth errors is less

than the intensity without etch depth errors. Further averaging should make the relative scatter intensity

converge to the plot of equation (35).

3.3.3 CIRCULAR FRESNEL ZONE PLATES

We now consider random etch depth errors in circular Fresnel zone plates. In this case we must use
the two-dimensional roughness scattering formula, equation (21). For our purposes here we want the scatter

intensity from the "rough" part divided by the peak intensity of the smooth part in the absence of roughness.
Using equations (22) and (23) we find

<irough(X0'Y0' Z)>/lpeak = [k(n-1)crr/H 2 [1 + (rkx0/z) 2 + (7"kYo/Z)2] "312 (37)

for the two-dimensional or circular Fresnel zone plate. The nns roughness cr will be, as before, equal to the

standard deviation of the etch depth error, 6. The correlation length will again be given by equation (36).

The relative scattering h)r the circular Fresnel zone plate with design FZP1 is shown in figure (12).
The relative scattering in the two-dimensional case is much less than the relative scattering in the one-
dimensional case (figure (9)) for the same average etch depth error.

Design FZPI also has much less relative scattering than design FZP4, shown in figure (13). What is the
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reasonforthis?:Therearethreetermsin-equatlon(37)whichch-ange('romdesign FZP1 to FZP4; r, ),, and

11. The correlation length r in turn is a function of the wavelength ),, the number of levels M, andthe f-number
f#. We now derive an approximate value for r. If the f-number is not too small we can approximate the

transition point a i from equation (5) by using the paraxiai approximatlon,

2 _., 2,_fj/M.fi

Hence,

aj + 12 - aj2 _ 2,_f/M

and therefore

We have then that

? 7 EL

aj+ l -aj = 21f/(Maj+ 1 +Maj).

r = mean(aj+ 1 - aj) = [2_f/M] mean(1/[aj+ 1 + aj]) 2),liMa r

r = 4xfl'/M. (38)

We see that the term k'r in equation (37) is approximately the same in both design FZP1 and FZP4, hence the
difference in relative scattering levels is due solely to the dlfference in refractive index n of the two designs.

3.4 LINE EDGE ERRORS

We now examine the effects of random line edge error {n Dammann gratings and Fresnel zone plates.

The 10cat_on of the line edge-is made random by adding e. to-dae-transq-t]bn pol-nt a_, Wl/ere e. is a random
• . . J I .l

number with mean of zero and standard devaat,on 8. Our random roughness formulas were derived under the

assumption of a small random phase shift to the surface, but we will attempt to use these formulas for the
random line edge errors.

A random line edge error could be regarded as a perturbation from the ideal pattern. The height of

the perturbation is the step height, h. The nns roughness o" is then the square root of the average amount of
height perturbation, or

0 = [m<w>h2/a] 1/2 (39)

where ,,, is the number of edges which vary from their proper positions in-a period a, and <w> is the mean

width of the perturbations. For a uniform probability over either the interval [0, 6./3] or [-6./3, 0],

<w> = 6(./3)/2 (40)

and 6 is the standard deviation of the error over that interval.

In the derivation of the nns roughness formula we assumed a two-sided exponential probability density

function, (1/2r) exp(-Ixl/r). Hence the standard deviation 6 is related to the corrclation length r by

6 = [(1/2"/') f.,_xaexp(-lxl/r) dr] 1/2

r j2. (41)

With o and r now given by equations (39), and (41), we can compare the computer simulations of random line
edge error to plots using the roughness formulas.

T.

z
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3.4.1 DAMMANN GRATINGS

We begin our examples of random line edge errors with the Dammann gratings. Figure (14) shows the
relative intensity versus angle for Dammann grating DG1 with line edge error 6 = 1 #m. A plot of the
roughness formula (29) is also shown (it is almost constant at 10"4). There are four edges per period in design
DG1, so m = 4 in equation (39). The step height h is given in Table 2. The scattering predicted by equation

(29) appears to be a little high compared to the computer simulation, possibly because the assumption made in
the derivation that h is small compared to _, is not very good. Figure (15) shows the case for 6 = 0.1 _m.

Equation (30) correctly predicts an increase in scattering of magnitude 100 when 6 is increased by a factor of

10. To see this in equation (30) we note that

< lrough(X0' Y0' z) > = 0"2/"

<w> 1"

_x 6 2 (42)

using equations (39), (40), and (41). When the period is decreased by a factor of four _design DG3), the
scattering increases by a factor of four (not shown here). The scattering is proportional to o" in equation (30),
and therefore proportional to i/a, according to equation (39).

When the wavelength is increased, and the step height is increased proportionally (design DG2), the
relative scattering intensity remains the same for random line edge errors. The roughness formula (34) predicts
this since the relative scattering is proportional to (crk)2, which is proportional to (h/,_) 2 by equation (39).

Figure 16 is a comparison of the roughness formula with measured data. The design is the same as
DG1 except the etch depth was (accidentally) 0.662 #m instead of 0.545/_m. This results in a reduction of the
zero order about a factor of ten from the design value. Measurements using a WYKO profilometer indicate a

nns roughness of about 0.43 nm, too little to explain the measured scattering. The random etch depth error was
measured to be about 1.0 nm, which could account for some of the scattering. A random line edge error with
standard deviation of 0.025/lm, when added to the etch depth error, gives a good approximation to the measured

scattering. This level of random line edge error was too small to be measured with the WYKO, and is less than

a typical manufacturing error.

Another comparison of measured data and the roughness formula is shown in figure (17) for design
DG4. The nns roughness of the lands was about 1.0 nm, but the grooves had a slope giving an effective

roughness of 27.6 nm. Since this slope was periodic we would expect a systematic error, rather than a random
error. Plotting these values of etch depth roughness shows 1.0 nm accounts for only a small part of the
measured scattering, and 27.6 nm predicts orders of magnitude more scattering than was measured. A line edge
error with standard deviation of 0.03 _zm agrees reasonably well with the scattering measurement.

3.4.2 CYLINDRICAL FRESNEL ZONE PLATES

We now consider random line edge errors in Fresnel zone plates. Figure (18) is a plot of the relative
scatter intensity of a cylindrical zone plate, design FZP1. The systematic error part of a 16-level zone plate has
been subtracted out. We add a random number e. to each transition point a.. To plot the roughness equation
we use the same formulas for r and o as we did For Dammann gratings. We interpret equation (39) using m

= T for the number of transition points or edges in the half-width or radius a of the design. We could write

o -- 1,16(J3)rf /fl y' (43)

using equations (39) and (40). The relative scattering increases by a factor of 100 when the line edge errors
increase by a factor of 10, as it does for Dammann gratings.

Design FZP2 has one fourth the transition points of design FZP1, but the step heights are four times
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as high, since

h = x/[(n - 1)M]. (44)

Roughness is proportional to hv/T, as we see from equation (43), so design FZP2 has twice the roughness of
design FZP1, and therefore four times the scattering for the same random line edge error. Computer
simulations confirm this prediction of the roughness formula.

There is less scattering from design FZP4 than design FZP1. It appears to be a result of differences
in the factors _,, T, and n. The number of transition points T is reduced approximately in proportion to ,X. The
step height is increased in proportion to _,, but decreased in proportion to (n - 1). We have from equations (30),
(43), and (44)

l,oug h _x I(n - 1)cr/)q 2

(n - 1)2 h2 r/;_ 2

_x (n- 1) 2 [l/(n- 1)] 2 1/1_3

_x 1/),. (45)
=

We see that the refractive index n doesn't really affect the scattering intensity for line edge errors, and the net
result is that the scattering is inversely proportional to the wavelength. However, if one particular design were
used at two wavelengths, then T and cr would be constant, and the scattering would be proportional to 1/)3.

3.4.3 CIRC_R FRES_L ZONE PLATES

Lastly we consider designs FZPi:and FZP4 for random Iine edge errors in circular FresneI zone plateS.
The intensity is found using random numbers e, added to the transitionDoints a.. These results are compared
to the roughness formula (37). As before, the/:orrelation length is 6/,/2, and ttae nns roughness cr is the m_s
surface height with respect to the design step height. For a circular FresneI zone plate

(7 = {Zj[(a i + <W>) 2- aj2](h/aT)2} 1/2

= (h/aT)IT<w> 2 + 2<w>T.jaf/2

= (h/aT)lT_23/4 + ,5.,/3 Y:jaj] 1/2. (46)

Figure (19) shows that the relative intensity of the scatter is down six or seven orders of magnitude
from the peak intensity, even for a fairly large line edge error of 1 #m standard deviation. As in the one-
dimensional case, the roughness formula predicts a decrease in relative scattering proportional to 1/), for
optimized designs.

=

4.0 CONCLUSIONS

Using Fourier optics methods some formulas for scattering from binary optics have been developed.
These formulas are similar to standard random roughness formulas used to predict scattering from smooth
surfaces. The formulas are Shown to agree reasonably well with cbrnputer simulations and actual measurements.
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